A note on 3-choosability of planar graphs without certain cycles
نویسندگان
چکیده
منابع مشابه
A note on 3-choosability of planar graphs without certain cycles
Steinberg asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin, and independently Sanders and Zhao, showed that every planar graph without any cycle of length between 4 and 9 is 3-colorable. We improve this result by showing that every planar graph without any cycle of length 4, 5, 6, or 9 is 3-choosable. © 2005 Elsevier B.V. All rights reserved.
متن کاملChoosability and edge choosability of planar graphs without five cycles
It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.
متن کاملGroup edge choosability of planar graphs without adjacent short cycles
In this paper, we aim to introduce the group version of edge coloring and list edge coloring, and prove that all 2-degenerate graphs along with some planar graphs without adjacent short cycles is group (∆(G) + 1)-edgechoosable while some planar graphs with large girth and maximum degree is group ∆(G)-edge-choosable.
متن کاملThe 4-choosability of planar graphs without 6-cycles
Let G be a planar graph without 6-cycles. We prove that G is 4-choosable.
متن کاملEdge choosability of planar graphs without small cycles
We investigate structural properties of planar graphs without triangles or without 4-cycles, and show that every triangle-free planar graph G is edge-( (G) + 1)-choosable and that every planar graph with (G) = 5 and without 4-cycles is also edge-( (G) + 1)-choosable. c © 2003 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2005
ISSN: 0012-365X
DOI: 10.1016/j.disc.2005.05.001